When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    More explicitly, let P n (ε) be the probability that X n is outside the ball of radius ε centered at X. Then X n is said to converge in probability to X if for any ε > 0 and any δ > 0 there exists a number N (which may depend on ε and δ) such that for all n ≥ N, P n (ε) < δ (the definition of limit).

  3. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  4. Technique for human error-rate prediction - Wikipedia

    en.wikipedia.org/wiki/Technique_for_human_error...

    HEPs for each sub-task are entered into the tree; all failure branches must have a known probability, otherwise the system will fail to provide a final answer. HRAETs provide the function of breaking down the primary operator tasks into finer steps, which are represented in the form of successes and failures.

  5. Conditional expectation - Wikipedia

    en.wikipedia.org/wiki/Conditional_expectation

    In probability theory, the conditional expectation, conditional expected value, or conditional mean of a random variable is its expected value evaluated with respect to the conditional probability distribution. If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of ...

  6. Probability of error - Wikipedia

    en.wikipedia.org/wiki/Probability_of_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  7. Probability axioms - Wikipedia

    en.wikipedia.org/wiki/Probability_axioms

    This is called the addition law of probability, or the sum rule. That is, the probability that an event in A or B will happen is the sum of the probability of an event in A and the probability of an event in B, minus the probability of an event that is in both A and B. The proof of this is as follows: Firstly,

  8. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    To qualify as a probability distribution, the assignment of values must satisfy the requirement that if you look at a collection of mutually exclusive events (events that contain no common results, e.g., the events {1,6}, {3}, and {2,4} are all mutually exclusive), the probability that any of these events occurs is given by the sum of the ...

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    [16] [21] In a slightly different formulation suited to the use of log-likelihoods (see Wilks' theorem), the test statistic is twice the difference in log-likelihoods and the probability distribution of the test statistic is approximately a chi-squared distribution with degrees-of-freedom (df) equal to the difference in df's between the two ...