When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, . Then the electron mobility μ is defined as =.

  3. Diffusion current - Wikipedia

    en.wikipedia.org/wiki/Diffusion_current

    The carrier particles, namely the holes and electrons of a semiconductor, move from a place of higher concentration to a place of lower concentration. Hence, due to the flow of holes and electrons there is a current. This current is called the diffusion current. The drift current and the diffusion current make up the total current in the conductor.

  4. Shubnikov–de Haas effect - Wikipedia

    en.wikipedia.org/wiki/Shubnikov–de_Haas_effect

    Since the electron charge e is known and also the Planck constant h, one can derive the electron density n of a sample from this plot. [3] Shubnikov–De Haas oscillations are observed in highly doped Bi 2 Se 3. [4] Fig 3 shows the reciprocal magnetic flux density 1/B i of the 10th to 14th minima of a Bi 2 Se 3 sample.

  5. Haynes–Shockley experiment - Wikipedia

    en.wikipedia.org/wiki/Haynes–Shockley_experiment

    where the js are the current densities of electrons (e) and holes (p), the μs the charge carrier mobilities, E is the electric field, n and p the number densities of charge carriers, the Ds are diffusion coefficients, and x is position.

  6. Carrier generation and recombination - Wikipedia

    en.wikipedia.org/wiki/Carrier_generation_and...

    Electron and hole trapping in the Shockley-Read-Hall model. In the SRH model, four things can happen involving trap levels: [11] An electron in the conduction band can be trapped in an intragap state. An electron can be emitted into the conduction band from a trap level. A hole in the valence band can be captured by a trap.

  7. Indium gallium arsenide - Wikipedia

    en.wikipedia.org/wiki/Indium_gallium_arsenide

    Measured carrier mobilities for electrons and holes are shown in Figure 4. The mobility of carriers in Ga 0.47 In 0.53 As is unusual in two regards: The very high value of electron mobility; The unusually large ratio of electron to hole mobility. The room temperature electron mobility for reasonably pure samples of Ga 0.47 In

  8. Electrons and Holes in Semiconductors with Applications to ...

    en.wikipedia.org/wiki/Electrons_and_Holes_in...

    Electrons and Holes in Semiconductors with Applications to Transistor Electronics is a book by Nobel Prize winner William Shockley, [1] first published in 1950. It was a primary source, and was used as the first textbook, for scientists and engineers learning the new field of semiconductors as applied to the development of the transistor .

  9. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    It is common to see cartoon depictions of the motion in energy and position of an electron (or electron hole) as it drifts, is excited by a light source, or relaxes from an excited state. The band diagram may be shown connected to a circuit diagram showing how bias voltages are applied, how charges flow, etc.