When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Uncorrelatedness (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Uncorrelatedness...

    Further, two jointly normally distributed random variables are independent if they are uncorrelated, [4] although this does not hold for variables whose marginal distributions are normal and uncorrelated but whose joint distribution is not joint normal (see Normally distributed and uncorrelated does not imply independent).

  3. Misconceptions about the normal distribution - Wikipedia

    en.wikipedia.org/wiki/Misconceptions_about_the...

    Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.

  4. Independence (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Independence_(probability...

    Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.

  5. Talk:Misconceptions about the normal distribution - Wikipedia

    en.wikipedia.org/wiki/Talk:Misconceptions_about...

    DEFINITION:Random variable A is said to be normal, denoted A ∈ ƒ, when its sample observations follow a univariate or multivariate Gaussian distribution of some fixed mean and (co)variance; when making statements about more than one multivariate random variable, e.g. three multivariate random variables A ∈ ƒ, B ∈ ƒ, C ∈ ƒ, then ...

  6. Rademacher distribution - Wikipedia

    en.wikipedia.org/wiki/Rademacher_distribution

    The Rademacher distribution can be used to show that normally distributed and uncorrelated does not imply independent. Random vectors with components sampled independently from the Rademacher distribution are useful for various stochastic approximations, for example:

  7. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    As it approaches zero there is less of a relationship (closer to uncorrelated). The closer the coefficient is to either −1 or 1, the stronger the correlation between the variables. If the variables are independent, Pearson's correlation coefficient is 0. However, because the correlation coefficient detects only linear dependencies between two ...

  8. Pairwise independence - Wikipedia

    en.wikipedia.org/wiki/Pairwise_independence

    Pairwise independence does not imply mutual independence, as shown by the following example attributed to S. Bernstein. [3]Suppose X and Y are two independent tosses of a fair coin, where we designate 1 for heads and 0 for tails.

  9. Factor analysis - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis

    In this particular example, if we do not know beforehand that the two types of intelligence are uncorrelated, then we cannot interpret the two factors as the two different types of intelligence. Even if they are uncorrelated, we cannot tell which factor corresponds to verbal intelligence and which corresponds to mathematical intelligence ...