Search results
Results From The WOW.Com Content Network
The number of neuronal connections in the human brain (estimated at 10 14), or 100 trillion/100 T; The Avogadro constant is the number of "elementary entities" (usually atoms or molecules) in one mole; the number of atoms in 12 grams of carbon-12 – approximately 6.022 × 10 23, or 602.2 sextillion/60.2Sx.
Billion is a word for a large number, and it has two distinct definitions: 1,000,000,000 , i.e. one thousand million , or 10 9 (ten to the ninth power ), as defined on the short scale . This is now the most common sense of the word in all varieties of English; it has long been established in American English and has since become common in ...
Verification of the binary digits (Bellard's formula): 13 days; Conversion to base 10: 12 days; Verification of the conversion: 3 days; Verification of the binary digits used a network of 9 Desktop PCs during 34 hours. 131 days 2,699,999,990,000 = 2.7 × 10 12 − 10 4: 2 August 2010 Shigeru Kondo [49] using y-cruncher [50] 0.5.4 by Alexander Yee
For example, the conversion factor between a mass fraction of 1 ppb and a mole fraction of 1 ppb is about 4.7 for the greenhouse gas CFC-11 in air (Molar mass of CFC-11 / Mean molar mass of air = 137.368 / 28.97 = 4.74). For volume fraction, the suffix "V" or "v" is sometimes appended to the parts-per notation (e.g. ppmV, ppbv, pptv).
Machin's particular formula was used well into the computer era for calculating record numbers of digits of π, [39] but more recently other similar formulae have been used as well. For instance, Shanks and his team used the following Machin-like formula in 1961 to compute the first 100,000 digits of π : [ 39 ]
The factor–label method can convert only unit quantities for which the units are in a linear relationship intersecting at 0 (ratio scale in Stevens's typology). Most conversions fit this paradigm. An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees ...
The same number, however, would be used if the last two digits were also measured precisely and found to equal 0 – seven significant figures. When a number is converted into normalized scientific notation, it is scaled down to a number between 1 and 10. All of the significant digits remain, but the placeholding zeroes are no longer required.
The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale