When.com Web Search

  1. Ads

    related to: perimeter of polygons grade 4 worksheets

Search results

  1. Results From The WOW.Com Content Network
  2. Perimeter - Wikipedia

    en.wikipedia.org/wiki/Perimeter

    If R is a regular polygon's radius and n is the number of its sides, then its perimeter is 2 n R sin ⁡ ( 180 ∘ n ) . {\displaystyle 2nR\sin \left({\frac {180^{\circ }}{n}}\right).} A splitter of a triangle is a cevian (a segment from a vertex to the opposite side) that divides the perimeter into two equal lengths, this common length being ...

  3. Apothem - Wikipedia

    en.wikipedia.org/wiki/Apothem

    The apothem a can be used to find the area of any regular n-sided polygon of side length s according to the following formula, which also states that the area is equal to the apothem multiplied by half the perimeter since ns = p.

  4. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Among all quadrilaterals with a given perimeter, the one with the largest area is the square. This is called the isoperimetric theorem for quadrilaterals. It is a direct consequence of the area inequality [38]: p.114 where K is the area of a convex quadrilateral with perimeter L.

  5. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The square is a highly symmetric object. There are four lines of reflectional symmetry and it has rotational symmetry of order 4 (through 90°, 180° and 270°). Its symmetry group is the dihedral group D 4. A square can be inscribed inside any regular polygon. The only other polygon with this property is the equilateral triangle.

  6. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + ⁠ 96 / 2 ⁠ − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.

  7. Shoelace formula - Wikipedia

    en.wikipedia.org/wiki/Shoelace_formula

    Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]