When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hydrogen atom - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_atom

    Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.

  3. Hydrogen ion - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_ion

    A hydrogen atom is made up of a nucleus with charge +1, and a single electron. Therefore, the only positively charged ion possible has charge +1. It is noted H +. Depending on the isotope in question, the hydrogen cation has different names: Hydron: general name referring to the positive ion of any hydrogen isotope (H +)

  4. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    Since this derivation is with the assumption that the nucleus is orbited by one electron, we can generalize this result by letting the nucleus have a charge q = Ze, where Z is the atomic number. This will now give us energy levels for hydrogenic (hydrogen-like) atoms, which can serve as a rough order-of-magnitude approximation of the actual ...

  5. Paschen's law - Wikipedia

    en.wikipedia.org/wiki/Paschen's_law

    The electron mean free path can become long compared to the gap between the electrodes. In this case, the electrons might gain large amounts of energy, but have fewer ionizing collisions. A greater voltage is therefore required to assure ionization of enough gas molecules to start an avalanche.

  6. Ion - Wikipedia

    en.wikipedia.org/wiki/Ion

    Ammonia and ammonium have the same number of electrons in essentially the same electronic configuration, but ammonium has an extra proton that gives it a net positive charge. Ammonia can also lose an electron to gain a positive charge, forming the ion NH + 3.

  7. Electron affinity (data page) - Wikipedia

    en.wikipedia.org/wiki/Electron_affinity_(data_page)

    Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion.

  8. Valence electron - Wikipedia

    en.wikipedia.org/wiki/Valence_electron

    An atom with one or two electrons fewer than a closed shell is reactive due to its tendency either to gain the missing valence electrons and form a negative ion, or else to share valence electrons and form a covalent bond. Similar to a core electron, a valence electron has the ability to absorb or release energy in the form of a photon.

  9. Ionization energy - Wikipedia

    en.wikipedia.org/wiki/Ionization_energy

    Hydrogen's ionization energy is very high (at 13.59844 eV), compared to the alkali metals. This is due to its single electron (and hence, very small electron cloud), which is close to the nucleus. Likewise, since there are not any other electrons that may cause shielding, that single electron experiences the full net positive charge of the nucleus.