When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/Magnetic_resonance_imaging

    The field strength of the magnet is measured in teslas – and while the majority of systems operate at 1.5 T, commercial systems are available between 0.2 and 7 T. 3T MRI systems, also called 3 Tesla MRIs, have stronger magnets than 1.5 systems and are considered better for images of organs and soft tissue. [7]

  3. Tesla (unit) - Wikipedia

    en.wikipedia.org/wiki/Tesla_(unit)

    11.75 T – the strength of INUMAC magnets, largest MRI scanner [13] 13 T – strength of the superconducting ITER magnet system [14] 14.5 T – highest magnetic field strength ever recorded for an accelerator steering magnet at Fermilab [15] 16 T – magnetic field strength required to levitate a frog [16] (by diamagnetic levitation of the ...

  4. Physics of magnetic resonance imaging - Wikipedia

    en.wikipedia.org/wiki/Physics_of_magnetic...

    Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...

  5. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance (⁠ 1 / distance 3 ⁠) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]

  6. National High Magnetic Field Laboratory - Wikipedia

    en.wikipedia.org/wiki/National_High_Magnetic...

    The lab develops technology, methodology, and applications at high magnetic fields through both in-house and external user activities. An in-house made 900 MHz (21.1 Tesla) NMR magnet has an ultra-wide bore measuring 105 mm (about 4 inches) in diameter, this superconducting magnet has the highest field for MRI study of a living animals. [15]

  7. Earth's field NMR - Wikipedia

    en.wikipedia.org/wiki/Earth's_field_NMR

    The signal strength is proportional to the stimulating magnetic field and the number of nuclei of that isotope in the sample. Thus, in the 21 tesla magnetic field that may be found in high-resolution laboratory NMR spectrometers, protons resonate at 900 MHz. However, in the Earth's magnetic field the same nuclei resonate at audio frequencies of ...

  8. Instruments used in radiology - Wikipedia

    en.wikipedia.org/wiki/Instruments_used_in_radiology

    high strength (0.15 to 1.5 teslas) [4] are used to excite protons that produce the record results (like CT scan). It can show particular tissues more clearly than CT.; [4] video link: Linear accelerator: used in radiotherapy for cancer: Functional magnetic resonance imaging (fMRI) video link

  9. Susceptibility weighted imaging - Wikipedia

    en.wikipedia.org/wiki/Susceptibility_weighted...

    Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.