When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reduced mass - Wikipedia

    en.wikipedia.org/wiki/Reduced_mass

    Reduced mass allows the two-body problem to be solved as if it were a one-body problem. Note, however, that the mass determining the gravitational force is not reduced. In the computation, one mass can be replaced with the reduced mass, if this is compensated by replacing the other mass with the sum of both masses.

  3. gc (engineering) - Wikipedia

    en.wikipedia.org/wiki/Gc_(engineering)

    In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.

  4. Orders of magnitude (force) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(force)

    One kilogram-force, nominal weight of a 1 kg (2.2 lb) object at sea level on Earth [15] 10 N 50 N Average force to break the shell of a chicken egg from a young hen [16] 10 2 N 720 N Average force of human bite, measured at molars [17] 10 3 N kilonewton (kN) 5 kN The force applied by the engine of a small car during peak acceleration [citation ...

  5. Specific weight - Wikipedia

    en.wikipedia.org/wiki/Specific_weight

    The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...

  6. Newton (unit) - Wikipedia

    en.wikipedia.org/wiki/Newton_(unit)

    The newton (symbol: N) is the unit of force in the International System of Units (SI). Expressed in terms of SI base units, it is 1 kg⋅m/s 2, the force that accelerates a mass of one kilogram at one metre per second squared. The unit is named after Isaac Newton in recognition of his work on classical mechanics, specifically his second law of ...

  7. Two-body problem - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem

    Dividing both force equations by the respective masses, subtracting the second equation from the first, and rearranging gives the equation ¨ = ¨ ¨ = = (+) where we have again used Newton's third law F 12 = −F 21 and where r is the displacement vector from mass 2 to mass 1, as defined above.

  8. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.

  9. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Assuming SI units, F is measured in newtons (N), m 1 and m 2 in kilograms (kg), r in meters (m), and the constant G is 6.674 30 (15) × 10 −11 m 3 ⋅kg −1 ⋅s −2. [12] The value of the constant G was first accurately determined from the results of the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798 ...