When.com Web Search

  1. Ad

    related to: irrotational vortex flow

Search results

  1. Results From The WOW.Com Content Network
  2. Vortex - Wikipedia

    en.wikipedia.org/wiki/Vortex

    The Rankine vortex is a model that assumes a rigid-body rotational flow where r is less than a fixed distance r 0, and irrotational flow outside that core regions. In a viscous fluid, irrotational flow contains viscous dissipation everywhere, yet there are no net viscous forces, only viscous stresses. [7]

  3. Vorticity - Wikipedia

    en.wikipedia.org/wiki/Vorticity

    Rigid-body-like vortex v ∝ r: Parallel flow with shear Irrotational vortex v ∝ ⁠ 1 / r ⁠ where v is the velocity of the flow, r is the distance to the center of the vortex and ∝ indicates proportionality. Absolute velocities around the highlighted point: Relative velocities (magnified) around the highlighted point Vorticity ≠ 0 ...

  4. Potential flow - Wikipedia

    en.wikipedia.org/wiki/Potential_flow

    Potential-flow streamlines around a NACA 0012 airfoil at 11° angle of attack, with upper and lower streamtubes identified. The flow is two-dimensional and the airfoil has infinite span. In fluid dynamics, potential flow or irrotational flow refers to a description of a fluid flow with no vorticity in it.

  5. Two-dimensional flow - Wikipedia

    en.wikipedia.org/wiki/Two-dimensional_flow

    A vortex is a region where the fluid flows around an imaginary axis. For an irrotational vortex, the flow at every point is such that a small particle placed there undergoes pure translation and does not rotate. Velocity varies inversely with radius in this case.

  6. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    The vorticity of an irrotational field is zero everywhere. [6] Kelvin's circulation theorem states that a fluid that is irrotational in an inviscid flow will remain irrotational. This result can be derived from the vorticity transport equation, obtained by taking the curl of the Navier–Stokes equations.

  7. Rankine vortex - Wikipedia

    en.wikipedia.org/wiki/Rankine_vortex

    The Rankine vortex is a simple mathematical model of a vortex in a viscous fluid. It is named after its discoverer, William John Macquorn Rankine. The vortices observed in nature are usually modelled with an irrotational (potential or free) vortex. However, in a potential vortex, the velocity becomes infinite at the vortex center.

  8. Helmholtz's theorems - Wikipedia

    en.wikipedia.org/wiki/Helmholtz's_theorems

    The strength of a vortex line is constant along its length. Helmholtz's second theorem A vortex line cannot end in a fluid; it must extend to the boundaries of the fluid or form a closed path. Helmholtz's third theorem A fluid element that is initially irrotational remains irrotational. Helmholtz's theorems apply to inviscid flows.

  9. Potential flow around a circular cylinder - Wikipedia

    en.wikipedia.org/wiki/Potential_flow_around_a...

    In mathematics, potential flow around a circular cylinder is a classical solution for the flow of an inviscid, incompressible fluid around a cylinder that is transverse to the flow. Far from the cylinder, the flow is unidirectional and uniform. The flow has no vorticity and thus the velocity field is irrotational and can be modeled as a ...