When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  3. Score test - Wikipedia

    en.wikipedia.org/wiki/Score_test

    Since function maximization subject to equality constraints is most conveniently done using a Lagrangean expression of the problem, the score test can be equivalently understood as a test of the magnitude of the Lagrange multipliers associated with the constraints where, again, if the constraints are non-binding at the maximum likelihood, the ...

  4. Pontryagin's maximum principle - Wikipedia

    en.wikipedia.org/wiki/Pontryagin's_maximum_Principle

    The constraints on the system dynamics can be adjoined to the Lagrangian by introducing time-varying Lagrange multiplier vector , whose elements are called the costates of the system. This motivates the construction of the Hamiltonian H {\displaystyle H} defined for all t ∈ [ 0 , T ] {\displaystyle t\in [0,T]} by:

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    The Lagrange multipliers are arbitrary functions of time t, but not functions of the coordinates r k, so the multipliers are on equal footing with the position coordinates.

  6. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    Another condition in which the min-max and max-min are equal is when the Lagrangian has a saddle point: (x∗, λ∗) is a saddle point of the Lagrange function L if and only if x∗ is an optimal solution to the primal, λ∗ is an optimal solution to the dual, and the optimal values in the indicated problems are equal to each other. [18 ...

  7. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Constrained problems can often be transformed into unconstrained problems with the help of Lagrange multipliers. Lagrangian relaxation can also provide approximate solutions to difficult constrained problems. When the objective function is a convex function, then any local minimum will also be a global minimum.

  8. Lagrange multipliers on Banach spaces - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multipliers_on...

    In the field of calculus of variations in mathematics, the method of Lagrange multipliers on Banach spaces can be used to solve certain infinite-dimensional constrained optimization problems. The method is a generalization of the classical method of Lagrange multipliers as used to find extrema of a function of finitely many variables.

  9. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.