When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Franck–Hertz experiment - Wikipedia

    en.wikipedia.org/wiki/Franck–Hertz_experiment

    The figure at the right shows the spectrum of a Franck–Hertz tube; nearly all of the light emitted has a single wavelength. For reference, the figure also shows the spectrum for a mercury gas discharge light, which emits light at several wavelengths besides 254 nm. The figure is based on the original spectra published by Franck and Hertz in 1914.

  3. Excited state - Wikipedia

    en.wikipedia.org/wiki/Excited_state

    After excitation the atom may return to the ground state or a lower excited state, by emitting a photon with a characteristic energy. Emission of photons from atoms in various excited states leads to an electromagnetic spectrum showing a series of characteristic emission lines (including, in the case of the hydrogen atom, the Lyman, Balmer ...

  4. Luminescence - Wikipedia

    en.wikipedia.org/wiki/Luminescence

    Cryoluminescence, the emission of light when an object is cooled [6] (an example of this is wulfenite) Photoluminescence, a result of the absorption of photons Fluorescence, traditionally defined as the emission of light that ends immediately after the source of excitation is removed. As the definition does not fully describe the phenomenon ...

  5. Spontaneous emission - Wikipedia

    en.wikipedia.org/wiki/Spontaneous_emission

    Spontaneous emission is the process in which a quantum mechanical system (such as a molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy state (e.g., its ground state) and emits a quantized amount of energy in the form of a photon.

  6. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Electron excitation is the transfer of a bound electron to a more energetic, but still bound state. This can be done by photoexcitation (PE), where the electron absorbs a photon and gains all its energy [ 1 ] or by collisional excitation (CE), where the electron receives energy from a collision with another, energetic electron. [ 2 ]

  7. Photoluminescence - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence

    The former is typically a fast process, yet some amount of the original energy is dissipated so that re-emitted light photons will have lower energy than did the absorbed excitation photons. The re-emitted photon in this case is said to be red shifted, referring to the reduced energy it carries following this loss (as the Jablonski diagram shows).

  8. Emission spectrum - Wikipedia

    en.wikipedia.org/wiki/Emission_spectrum

    The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted. Emission spectrum of hydrogen. The above picture shows the visible light emission spectrum for hydrogen. If ...

  9. Photoexcitation - Wikipedia

    en.wikipedia.org/wiki/Photoexcitation

    On the atomic and molecular scale photoexcitation is the photoelectrochemical process of electron excitation by photon absorption, when the energy of the photon is too low to cause photoionization. The absorption of the photon takes place in accordance with Planck's quantum theory.