When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Elliptic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Elliptic_partial...

    For example, a time-independent solution of the heat equation solves Laplace's equation. That is, if parabolic and hyperbolic PDEs are associated with modeling dynamical systems then the solutions of elliptic PDEs are associated with steady states. Informally, this is reflective of the above regularity theorem, as steady states are generally ...

  3. Kansa method - Wikipedia

    en.wikipedia.org/wiki/Kansa_method

    Kansa method has recently been extended to various ordinary and PDEs including the bi-phasic and triphasic mixture models of tissue engineering problems, [14] [15] 1D nonlinear Burger's equation [16] with shock wave, shallow water equations [17] for tide and current simulation, heat transfer problems, [18] free boundary problems, [19] and ...

  4. Parabolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Parabolic_partial...

    Equations with < are termed elliptic while those with > are hyperbolic. The name "parabolic" is used because the assumption on the coefficients is the same as the condition for the analytic geometry equation A x 2 + 2 B x y + C y 2 + D x + E y + F = 0 {\displaystyle Ax^{2}+2Bxy+Cy^{2}+Dx+Ey+F=0} to define a planar parabola .

  5. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    The solutions of hyperbolic equations are "wave-like". If a disturbance is made in the initial data of a hyperbolic differential equation, then not every point of space feels the disturbance at once. Relative to a fixed time coordinate, disturbances have a finite propagation speed. They travel along the characteristics of the equation.

  6. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.

  7. Discontinuous Galerkin method - Wikipedia

    en.wikipedia.org/wiki/Discontinuous_Galerkin_method

    In applied mathematics, discontinuous Galerkin methods (DG methods) form a class of numerical methods for solving differential equations.They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications.

  8. Schauder estimates - Wikipedia

    en.wikipedia.org/wiki/Schauder_estimates

    The Schauder estimates are a necessary precondition to using the method of continuity to prove the existence and regularity of solutions to the Dirichlet problem for elliptic PDEs. This result says that when the coefficients of the equation and the nature of the boundary conditions are sufficiently smooth, there is a smooth classical solution ...

  9. Paraboloidal coordinates - Wikipedia

    en.wikipedia.org/wiki/Paraboloidal_coordinates

    Direct solution of the equations is difficult, however, in part because the separation constants and appear simultaneously in all three equations. Following the above approach, paraboloidal coordinates have been used to solve for the electric field surrounding a conducting paraboloid.