Search results
Results From The WOW.Com Content Network
Proof without words of the arithmetic progression formulas using a rotated copy of the blocks. An arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference from any succeeding term to its preceding term remains constant throughout the sequence. The constant difference is called common difference of that ...
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
The nth term of a geometric sequence with initial value a = a 1 and ... Substituting the formula for that sum, ... which is the formula in terms of the geometric mean
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence.
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,
The nth partial sum is given by a simple formula: = = (+). This equation was known to the Pythagoreans as early as the sixth century BCE. [5] Numbers of this form are called triangular numbers, because they can be arranged as an equilateral triangle.
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In words, the sum of the first Fibonacci numbers with odd index up to is the (2n)-th Fibonacci number, and the sum of the first Fibonacci numbers with even index up to is the (2n + 1)-th Fibonacci number minus 1. [35]