Search results
Results From The WOW.Com Content Network
Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.
The sum of the first n terms in the Padovan sequence is 2 less than P(n + 5), i.e. = = (+) Sums of alternate terms, sums of every third term and sums of every fifth term are also related to other terms in the sequence:
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
The first terms of the series sum to approximately +, where is the natural logarithm and is the Euler–Mascheroni constant. Because the logarithm has arbitrarily large values, the harmonic series does not have a finite limit: it is a divergent series .
This is a particular case of the sum of the reciprocals of any geometric series where the first term and the common ratio are positive integers. If the first term is a and the common ratio is r then the sum is r / a (r − 1) . The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10.
The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the n th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases.
In mathematics, a series is the sum of the terms of an infinite sequence of numbers. More precisely, an infinite sequence (,,, …) defines a series S that is denoted = + + + = =. The n th partial sum S n is the sum of the first n terms of the sequence; that is,
As with any infinite series, the sum + + + + is defined to mean the limit of the partial sum of the first n terms = + + + + + + as n approaches infinity, if it exists. By various arguments, [a] [1] one can show that each finite sum is equal to