When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wallis product - Wikipedia

    en.wikipedia.org/wiki/Wallis_product

    Wallis derived this infinite product using interpolation, though his method is not regarded as rigorous. A modern derivation can be found by examining ∫ 0 π sin n ⁡ x d x {\displaystyle \int _{0}^{\pi }\sin ^{n}x\,dx} for even and odd values of n {\displaystyle n} , and noting that for large n {\displaystyle n} , increasing n ...

  3. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    The sequence () is decreasing and has positive terms. In fact, for all : >, because it is an integral of a non-negative continuous function which is not identically zero; + = ⁡ + ⁡ = (⁡) (⁡) >, again because the last integral is of a non-negative continuous function.

  4. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  5. Infinite product - Wikipedia

    en.wikipedia.org/wiki/Infinite_product

    The same criterion applies to products of arbitrary complex numbers (including negative reals) if the logarithm is understood as a fixed branch of logarithm which satisfies ⁡ =, with the proviso that the infinite product diverges when infinitely many a n fall outside the domain of , whereas finitely many such a n can be ignored in the sum.

  6. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is, n ! ! = ∏ k = 0 ⌈ n 2 ⌉ − 1 ( n − 2 k ) = n ( n − 2 ) ( n − 4 ) ⋯ . {\displaystyle n!!=\prod _{k=0}^{\left\lceil {\frac {n}{2}}\right\rceil -1}(n-2k ...

  7. Power rule - Wikipedia

    en.wikipedia.org/wiki/Power_rule

    The power rule for integrals was first demonstrated in a geometric form by Italian mathematician Bonaventura Cavalieri in the early 17th century for all positive integer values of , and during the mid 17th century for all rational powers by the mathematicians Pierre de Fermat, Evangelista Torricelli, Gilles de Roberval, John Wallis, and Blaise ...

  8. Multiple integral - Wikipedia

    en.wikipedia.org/wiki/Multiple_integral

    When the integrand is a constant function c, the integral is equal to the product of c and the measure of the domain of integration. If c = 1 and the domain is a subregion of R 2, the integral gives the area of the region, while if the domain is a subregion of R 3, the integral gives the volume of the region

  9. Integration testing - Wikipedia

    en.wikipedia.org/wiki/Integration_testing

    Integration testing, also called integration and testing, abbreviated I&T, is a form of software testing in which multiple parts of a software system are tested as a group. Integration testing describes tests that are run at the integration-level to contrast testing at the unit or system level.