When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chemical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Chemical_equilibrium

    Equality of forward and backward reaction rates, however, is a necessary condition for chemical equilibrium, though it is not sufficient to explain why equilibrium occurs. Despite the limitations of this derivation, the equilibrium constant for a reaction is indeed a constant, independent of the activities of the various species involved ...

  3. Reversible reaction - Wikipedia

    en.wikipedia.org/wiki/Reversible_reaction

    A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics. Weak acids and bases undergo reversible reactions. For example, carbonic acid: H 2 CO 3 (l) + H 2 O (l) ⇌ HCO 3 − (aq) + H 3 O + (aq).

  4. Equilibrium chemistry - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_chemistry

    Chemical equilibrium is a dynamic state in which forward and backward reactions proceed at such rates that the macroscopic composition of the mixture is constant. Thus, equilibrium sign ⇌ symbolizes the fact that reactions occur in both forward ⇀ {\displaystyle \rightharpoonup } and backward ↽ {\displaystyle \leftharpoondown } directions.

  5. Le Chatelier's principle - Wikipedia

    en.wikipedia.org/wiki/Le_Chatelier's_principle

    A catalyst increases the rate of a reaction without being consumed in the reaction. The use of a catalyst does not affect the position and composition of the equilibrium of a reaction, because both the forward and backward reactions are sped up by the same factor. For example, consider the Haber process for the synthesis of ammonia (NH 3):

  6. Dynamic equilibrium (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Dynamic_equilibrium

    Substances initially transition between the reactants and products at different rates until the forward and backward reaction rates eventually equalize, meaning there is no net change. Reactants and products are formed at such a rate that the concentration of neither changes. It is a particular example of a system in a steady state.

  7. Law of mass action - Wikipedia

    en.wikipedia.org/wiki/Law_of_mass_action

    Guldberg and Waage also recognized that chemical equilibrium is a dynamic process in which rates of reaction for the forward and backward reactions must be equal at chemical equilibrium. In order to derive the expression of the equilibrium constant appealing to kinetics, the expression of the rate equation must be used.

  8. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    The forward and reverse reactions are competing with each other and differ in reaction rates. These rates depend on the concentration and therefore change with the time of the reaction: the reverse rate gradually increases and becomes equal to the rate of the forward reaction, establishing the so-called chemical equilibrium.

  9. Equilibrium constant - Wikipedia

    en.wikipedia.org/wiki/Equilibrium_constant

    the reaction results in the change of the number of moles of gas in the system. In the example reaction above, the number of moles changes from 4 to 2, and an increase of pressure by system compression will result in appreciably more ammonia in the equilibrium mixture. In the general case of a gaseous reaction: α A + β B ⇌ σ S + τ T