Search results
Results From The WOW.Com Content Network
The alttype field allows conversion between units of different type, provided each unit is whitelisted to allow the conversion. As at December 2013, the following energy units have alttype = "torque" (the first line consists of different units, while the second line consists of aliases for units in the first line):
Energy; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: yottajoule: YJ YJ 1.0 YJ (2.8 × 10 17 kWh) zettajoule: ZJ ZJ 1.0 ZJ (2.8 × 10 14 kWh)
Energy (system unit unit-code symbol or abbrev. notes sample default conversion combination output units SI: gigajoule: GJ GJ 1.0 GJ (280 kWh) megajoule: MJ MJ 1.0 MJ (0.28 kWh)
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries [29] 0.4: 1.55: Liquid Nitrogen: 0.349: Water – Enthalpy of Fusion: 0.334: 0.334: battery, Zinc–Bromine flow (ZnBr) [30] 0.27: battery, Nickel–metal hydride (NiMH), High-Power design as used in cars [31] 0.250: 0.493: battery, Nickel–Cadmium (NiCd ...
The amount of work in joules is given by the product of the charge that has moved, in coulombs, and the potential difference that has been crossed, in volts. [ 1 ] Electrical energy is usually sold by the kilowatt hour (1 kW·h = 3.6 MJ) which is the product of the power in kilowatts multiplied by running time in hours.
The unit of energy consumed is deemed to be 33.7 kilowatt-hours without regard to the efficiency of conversion of heat energy into electrical energy, also measured in kilowatt-hours (kWh). The equivalence of this unit to energy in a gallon of gasoline is true if and only if the heat engine, generating equipment, and power delivery to the car ...
In electrical engineering, power conversion is the process of converting electric energy from one form to another. A power converter is an electrical device for converting electrical energy between alternating current (AC) and direct current (DC). It can also change the voltage or frequency of the current.
The work required to move an electric charge of one coulomb through an electrical potential difference of one volt, or one coulomb-volt (C⋅V). This relationship can be used to define the volt. The work required to produce one watt of power for one second, or one watt-second (W⋅s) (compare kilowatt-hour, which is 3.6 megajoules). This ...