Search results
Results From The WOW.Com Content Network
Tautological consequence can also be defined as ∧ ∧ ... ∧ → is a substitution instance of a tautology, with the same effect. [2]It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied.
In propositional logic, tautology is either of two commonly used rules of replacement. [ 1 ] [ 2 ] [ 3 ] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs .
Tautology is sometimes symbolized by "Vpq", and contradiction by "Opq". The tee symbol ⊤ {\displaystyle \top } is sometimes used to denote an arbitrary tautology, with the dual symbol ⊥ {\displaystyle \bot } ( falsum ) representing an arbitrary contradiction; in any symbolism, a tautology may be substituted for the truth value " true ", as ...
This contradiction, as opposed to metaphysical thinking, is not an objectively impossible thing, because these contradicting forces exist in objective reality, not cancelling each other out, but actually defining each other's existence. According to Marxist theory, such a contradiction can be found, for example, in the fact that:
15, true, Tautology. Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
However, the term tautology is also commonly used to refer to what could more specifically be called truth-functional tautologies. Whereas a tautology or logical truth is true solely because of the logical terms it contains in general (e.g. " every ", " some ", and "is"), a truth-functional tautology is true because of the logical terms it ...
0. The null assumption, i.e., we are proving a tautology 1. Our first subproof: we assume the l.h.s. to show the r.h.s. follows 2. A subsubproof: we are free to assume what we want. Here we aim for a reductio ad absurdum 3. We now have a contradiction 4. We are allowed to prefix the statement that "caused" the contradiction with a not 5.
In logic, the law of excluded middle or the principle of excluded middle states that for every proposition, either this proposition or its negation is true. [1] [2] It is one of the three laws of thought, along with the law of noncontradiction, and the law of identity; however, no system of logic is built on just these laws, and none of these laws provides inference rules, such as modus ponens ...