When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    More formally, multiplying two n-digit numbers using long multiplication requires Θ(n 2) single-digit operations (additions and multiplications). When implemented in software, long multiplication algorithms must deal with overflow during additions, which can be expensive.

  3. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    [1] [2] [3] It is a divide-and-conquer algorithm that reduces the multiplication of two n-digit numbers to three multiplications of n/2-digit numbers and, by repeating this reduction, to at most ⁡ single-digit multiplications.

  4. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    Trachtenberg defined this algorithm with a kind of pairwise multiplication where two digits are multiplied by one digit, essentially only keeping the middle digit of the result. By performing the above algorithm with this pairwise multiplication, even fewer temporary results need to be held. Example:

  5. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007. It is asymptotically faster than older methods such as Karatsuba and Toom–Cook multiplication, and starts to outperform them in practice for numbers beyond about 10,000 to 100,000 decimal digits. [2]

  6. Lattice multiplication - Wikipedia

    en.wikipedia.org/wiki/Lattice_multiplication

    As an example, consider the multiplication of 58 with 213. After writing the multiplicands on the sides, consider each cell, beginning with the top left cell. In this case, the column digit is 5 and the row digit is 2. Write their product, 10, in the cell, with the digit 1 above the diagonal and the digit 0 below the diagonal (see picture for ...

  7. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1. The algorithm performs a fixed sequence of operations (up to log n): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value. A similar algorithm for ...

  8. Blackstone's Card Trick Without Cards - Wikipedia

    en.wikipedia.org/wiki/Blackstone's_Card_Trick...

    The series of mathematical manipulations results in any given card producing a unique number. The multiplication by 2 and 5 means that the final number is ten times the card's value, plus a fixed 15 (for the addition of 3 and the multiplication by 5) and an additional suit-dependent figure. Thus both suit and value are readily identifiable.

  9. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    If one has a two-digit number, take it and add the two numbers together and put that sum in the middle, and one can get the answer. For example: 24 x 11 = 264 because 2 + 4 = 6 and the 6 is placed in between the 2 and the 4. Second example: 87 x 11 = 957 because 8 + 7 = 15 so the 5 goes in between the 8 and the 7 and the 1 is carried to the 8.