When.com Web Search

  1. Ad

    related to: proving np complete problems example math

Search results

  1. Results From The WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  3. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    "NP-complete problems are the most difficult known problems." Since NP-complete problems are in NP, their running time is at most exponential. However, some problems have been proven to require more time, for example Presburger arithmetic. Of some problems, it has even been proven that they can never be solved at all, for example the halting ...

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    However, after this problem was proved to be NP-complete, proof by reduction provided a simpler way to show that many other problems are also NP-complete, including the game Sudoku discussed earlier. In this case, the proof shows that a solution of Sudoku in polynomial time could also be used to complete Latin squares in polynomial time. [ 12 ]

  5. Boolean satisfiability problem - Wikipedia

    en.wikipedia.org/wiki/Boolean_satisfiability_problem

    For example, deciding whether a given graph has a 3-coloring is another problem in NP; if a graph has 17 valid 3-colorings, then the SAT formula produced by the Cook–Levin reduction will have 17 satisfying assignments. NP-completeness only refers to the run-time of the worst case instances.

  6. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  7. Cook–Levin theorem - Wikipedia

    en.wikipedia.org/wiki/Cook–Levin_theorem

    The use of SAT to prove the existence of an NP-complete problem can be extended to other computational problems in logic, and to completeness for other complexity classes. The quantified Boolean formula problem (QBF) involves Boolean formulas extended to include nested universal quantifiers and existential quantifiers for its variables.

  8. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  9. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    This is generally considered one of the most important open questions in mathematics and theoretical computer science as it has far-reaching consequences to other problems in mathematics, to biology, [14] philosophy [15] and to cryptography (see P versus NP problem proof consequences). A common example of an NP problem not known to be in P is ...