When.com Web Search

  1. Ad

    related to: lift coefficient of force example test questions printable

Search results

  1. Results From The WOW.Com Content Network
  2. Lift coefficient - Wikipedia

    en.wikipedia.org/wiki/Lift_coefficient

    In fluid dynamics, the lift coefficient (CL) is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft. CL is a function of the angle of the body to ...

  3. Kutta–Joukowski theorem - Wikipedia

    en.wikipedia.org/wiki/Kutta–Joukowski_theorem

    Kutta–Joukowski theorem. The Kutta–Joukowski theorem is a fundamental theorem in aerodynamics used for the calculation of lift of an airfoil (and any two-dimensional body including circular cylinders) translating in a uniform fluid at a constant speed so large that the flow seen in the body-fixed frame is steady and unseparated. The theorem ...

  4. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    Drag curve. The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.

  5. Magnus effect - Wikipedia

    en.wikipedia.org/wiki/Magnus_effect

    The Magnus effect is a phenomenon that occurs when a spinning object is moving through a fluid. A lift force acts on the spinning object and its path may be deflected in a manner not present when it is not spinning. The strength and direction of the Magnus effect is dependent on the speed and direction the of rotation of the object. [1]

  6. Lifting-line theory - Wikipedia

    en.wikipedia.org/wiki/Lifting-line_theory

    The Lanchester-Prandtl lifting-line theory[1] is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing from the wing's geometry. [2] The theory was expressed independently [3] by Frederick W. Lanchester in 1907, [4] and by Ludwig Prandtl in 1918–1919 [5] after working with Albert Betz and Max Munk.

  7. Wing loading - Wikipedia

    en.wikipedia.org/wiki/Wing_loading

    The lift force L on a wing of area A, traveling at true airspeed v is given by =, where ρ is the density of air, and C L is the lift coefficient. The lift coefficient is a dimensionless number that depends on the wing cross-sectional profile and the angle of attack. [12] At steady flight, neither climbing nor diving, the lift force and the ...

  8. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil. In fluid mechanics, an aerodynamic force is a force exerted on a body by the air (or other gas) in which the body is immersed, and is due to the relative ...

  9. Lift (force) - Wikipedia

    en.wikipedia.org/wiki/Lift_(force)

    The above lift equation neglects the skin friction forces, which are small compared to the pressure forces. By using the streamwise vector i parallel to the freestream in place of k in the integral, we obtain an expression for the pressure drag D p (which includes the pressure portion of the profile drag and, if the wing is three-dimensional ...