Ad
related to: finite sequence
Search results
Results From The WOW.Com Content Network
This definition covers several different uses of the word "sequence", including one-sided infinite sequences, bi-infinite sequences, and finite sequences (see below for definitions of these kinds of sequences). However, many authors use a narrower definition by requiring the domain of a sequence to be the set of natural numbers. This narrower ...
e. In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
List of mathematical series. This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. is a Bernoulli polynomial. is an Euler number. is the Riemann zeta function. is the gamma function. is a polygamma function. is a polylogarithm.
We say that "the limit of the sequence equals ." In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2] A sequence that does not converge is said to be divergent. [3]
In mathematics, a geometric series is a series summing the terms of an infinite geometric sequence, in which the ratio of consecutive terms is constant. For example, the series is a geometric series with common ratio , which converges to the sum of . Each term in a geometric series is the geometric mean of the term before it and ...
For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...
A finite sequence can be viewed as an infinite sequence with only finitely many nonzero terms, or in other words as a function : with finite support. For any complex-valued functions f , g on N {\displaystyle \mathbb {N} } with finite support, one can take their convolution : ( f ∗ g ) ( n ) = ∑ i + j = n f ( i ) g ( j ) . {\displaystyle (f ...
Algorithm. In mathematics and computer science, an algorithm (/ ˈælɡərɪðəm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1] Algorithms are used as specifications for performing calculations and data processing.