Search results
Results From The WOW.Com Content Network
If the vector spaces X and Y have respectively nondegenerate bilinear forms B X and B Y, a concept known as the adjoint, which is closely related to the transpose, may be defined: If u : X → Y is a linear map between vector spaces X and Y , we define g as the adjoint of u if g : Y → X satisfies
In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well. In Python NumPy arrays implement the flatten method, [note 1] while in R the desired effect can be achieved via the c() or as.vector() functions.
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...
The conjugate gradient method with a trivial modification is extendable to solving, given complex-valued matrix A and vector b, the system of linear equations = for the complex-valued vector x, where A is Hermitian (i.e., A' = A) and positive-definite matrix, and the symbol ' denotes the conjugate transpose.
Clearly, the transpose of a lower shift matrix is an upper shift matrix and vice versa. As a linear transformation, a lower shift matrix shifts the components of a column vector one position down, with a zero appearing in the first position. An upper shift matrix shifts the components of a column vector one position up, with a zero appearing in ...
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
The fundamental idea behind array programming is that operations apply at once to an entire set of values. This makes it a high-level programming model as it allows the programmer to think and operate on whole aggregates of data, without having to resort to explicit loops of individual scalar operations.
Replacing A with A T in the definition of the commutation matrix shows that K (m,n) = (K (n,m)) T. Therefore, in the special case of m = n the commutation matrix is an involution and symmetric. The main use of the commutation matrix, and the source of its name, is to commute the Kronecker product: for every m × n matrix A and every r × q ...