Search results
Results From The WOW.Com Content Network
Column generation or delayed column generation is an efficient algorithm for solving large linear programs. The overarching idea is that many linear programs are too large to consider all the variables explicitly. The idea is thus to start by solving the considered program with only a subset of its variables.
To see why a row or column cannot contain the same element more than once, let a, x, and y all be elements of a group, with x and y distinct. Then in the row representing the element a, the column corresponding to x contains the product ax, and similarly the column corresponding to y contains the product ay.
If ′ =, then for large the set is expected to have the fraction (1 - 1/e) (~63.2%) of the unique samples of , the rest being duplicates. [1] This kind of sample is known as a bootstrap sample. Sampling with replacement ensures each bootstrap is independent from its peers, as it does not depend on previous chosen samples when sampling.
To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
Within statistics, oversampling and undersampling in data analysis are techniques used to adjust the class distribution of a data set (i.e. the ratio between the different classes/categories represented).
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
The simplest checksum algorithm is the so-called longitudinal parity check, which breaks the data into "words" with a fixed number n of bits, and then computes the bitwise exclusive or (XOR) of all those words. The result is appended to the message as an extra word.