Search results
Results From The WOW.Com Content Network
valid for any vector fields X and Y and any tensor field T.. Considering vector fields as infinitesimal generators of flows (i.e. one-dimensional groups of diffeomorphisms) on M, the Lie derivative is the differential of the representation of the diffeomorphism group on tensor fields, analogous to Lie algebra representations as infinitesimal representations associated to group representation ...
The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, , which takes as its inputs: (1) a vector, u, defined at a point P, and (2) a vector field v defined in a neighborhood of P. [7]
Consider a generic (possibly non-Abelian) gauge transformation acting on a component field = =.The main examples in field theory have a compact gauge group and we write the symmetry operator as () = where () is an element of the Lie algebra associated with the Lie group of symmetry transformations, and can be expressed in terms of the hermitian generators of the Lie algebra (i.e. up to a ...
covariant derivative. exterior covariant derivative; Levi-Civita connection; parallel transport. Development (differential geometry) connection form; Cartan connection. affine connection; conformal connection; projective connection; method of moving frames; Cartan's equivalence method; Vierbein, tetrad; Cartan connection applications; Einstein ...
Connections (gauge connection) define this principal bundle, yielding a covariant derivative ∇ in each associated vector bundle. If a local frame is chosen (a local basis of sections), then this covariant derivative is represented by the connection form A, a Lie algebra-valued 1-form, which is called the gauge potential in physics. This is ...
In fact in the above expression, one can replace the covariant derivative with any torsion free connection ~ or locally, with the coordinate dependent derivative , showing that the Lie derivative is independent of the metric. The covariant derivative is convenient however because it commutes with raising and lowering indices.
Thus one might want a derivative with some of the features of a functional derivative and the covariant derivative. Multiplicative calculus replaces addition with multiplication, and hence rather than dealing with the limit of a ratio of differences, it deals with the limit of an exponentiation of ratios.
The covariant derivative is such a map for k = 0. The exterior covariant derivatives extends this map to general k. There are several equivalent ways to define this object: [3] Suppose that a vector-valued differential 2-form is regarded as assigning to each p a multilinear map s p: T p M × T p M → E p which is completely anti-symmetric.