Search results
Results From The WOW.Com Content Network
Single knots at 1/3 and 2/3 establish a spline of three cubic polynomials meeting with C 2 parametric continuity. Triple knots at both ends of the interval ensure that the curve interpolates the end points. In mathematics, a spline is a function defined piecewise by polynomials.
This is a list of Wikipedia articles about curves used in different fields: mathematics ... Splines. B-spline; Nonuniform rational B-spline; Fractal curves
The interpolated surface (meaning the kernel shape, not the image) is smoother than corresponding surfaces obtained by bilinear interpolation or nearest-neighbor interpolation. Bicubic interpolation can be accomplished using either Lagrange polynomials , cubic splines , or cubic convolution algorithm.
In the mathematical field of numerical analysis, spline interpolation is a form of interpolation where the interpolant is a special type of piecewise polynomial called a spline. That is, instead of fitting a single, high-degree polynomial to all of the values at once, spline interpolation fits low-degree polynomials to small subsets of the ...
See also Subdivision surfaces, which is an emerging alternative to spline-based surfaces. Pages in category "Splines (mathematics)" The following 30 pages are in this category, out of 30 total.
In this example, multiplicity four knots resided at either end of the curve and ensures that the curve is defined over the entire parametric range of u and that the curve interpolates its end points. This is not a general case; intervals can be partitioned by single multiplicity knots over the entire parametric range.
In applied mathematics, an Akima spline is a type of non-smoothing spline that gives good fits to curves where the second derivative is rapidly varying. [1] The Akima spline was published by Hiroshi Akima in 1970 from Akima's pursuit of a cubic spline curve that would appear more natural and smooth, akin to an intuitively hand-drawn curve.
The method is termed active spline model. [5] The model is devised on the basis of active shape model, but uses centripetal Catmull-Rom spline to join two successive points (active shape model uses simple straight line), so that the total number of points necessary to depict a shape is less. The use of centripetal Catmull-Rom spline makes the ...