Search results
Results From The WOW.Com Content Network
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
The divergence theorem is an important result for the mathematics of physics and engineering, particularly in electrostatics and fluid dynamics. In these fields, it is usually applied in three dimensions. However, it generalizes to any number of dimensions. In one dimension, it is equivalent to the fundamental theorem of calculus.
[citation needed] This is why the magnetic field, characterized by zero divergence, can be expressed as the curl of a magnetic vector potential. If W is a vector field with curl( W ) = V , then adding any gradient vector field grad( f ) to W will result in another vector field W + grad( f ) such that curl( W + grad( f )) = V as well.
Often a vector field is drawn by curves (field lines) following the "flow"; the magnitude of the vector field is then the line density, and the flux through a surface is the number of lines. Lines originate from areas of positive divergence (sources) and end at areas of negative divergence (sinks).
Divergence is a phenomenon in which the elastic twist of the wing suddenly becomes theoretically infinite, typically causing the wing to fail. Control reversal is a phenomenon occurring only in wings with ailerons or other control surfaces, in which these control surfaces reverse their usual functionality (e.g., the rolling direction associated ...
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: =
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
The physics convention. Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.