Search results
Results From The WOW.Com Content Network
Fig. 1: Critical stress vs slenderness ratio for steel, for E = 200 GPa, yield strength = 240 MPa. Euler's critical load or Euler's buckling load is the compressive load at which a slender column will suddenly bend or buckle. It is given by the formula: [1] = where
If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. [2] Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.
Johnson's formula interpolates between the yield stress of the column material and the critical stress given by Euler's formula. It creates a new failure border by fitting a parabola to the graph of failure for Euler buckling using = () There is a transition point on the graph of the Euler curve, located at the critical slenderness ratio.
Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2] When x = π, Euler's formula may be rewritten as e iπ + 1 = 0 or e iπ = −1, which is known as Euler's identity.
Euler’s pump and turbine equations can be used to predict the effect that changing the impeller geometry has on the head. Qualitative estimations can be made from the impeller geometry about the performance of the turbine/pump. This equation can be written as rothalpy invariance: =
The Euler number (Eu) is a dimensionless number used in fluid flow calculations. It expresses the relationship between a local pressure drop caused by a restriction and the kinetic energy per volume of the flow, and is used to characterize energy losses in the flow, where a perfect frictionless flow corresponds to an Euler number of 0.
Exposing a large volume of material to the maximum stress will reduce the measured flexural strength because it increases the likelihood of having cracks reaching critical length at a given applied load. Values for the flexural strength measured with four-point bending will be significantly lower than with three-point bending., [7] Compared ...
Euler's identity is a direct result of Euler's formula, published in his monumental 1748 work of mathematical analysis, Introductio in analysin infinitorum, [16] but it is questionable whether the particular concept of linking five fundamental constants in a compact form can be attributed to Euler himself, as he may never have expressed it.