Search results
Results From The WOW.Com Content Network
In organic chemistry, an amide, [1] [2] [3] also known as an organic amide or a carboxamide, is a compound with the general formula R−C(=O)−NR′R″, where R, R', and R″ represent any group, typically organyl groups or hydrogen atoms.
A second type of transamination reaction can be described as a nucleophilic substitution of one amine or amide anion on an amine or ammonium salt. [1] For example, the attack of a primary amine by a primary amide anion can be used to prepare secondary amines: RNH 2 + R'NH − → RR'NH + NH 2 −
The Hofmann rearrangement (Hofmann degradation) is the organic reaction of a primary amide to a primary amine with one less carbon atom. [1] [2] [3] The reaction involves oxidation of the nitrogen followed by rearrangement of the carbonyl and nitrogen to give an isocyanate intermediate.
Structures of three kinds of amides: an organic amide (carboxamide), a sulfonamide, and a phosphoramide. In chemistry, the term amide (/ ˈ æ m aɪ d / or / ˈ æ m ɪ d / or / ˈ eɪ m aɪ d /) [1] [2] [3] is a compound with the functional group R n E(=O) x NR 2, where x is not zero, E is some element, and each R represents an organic group or hydrogen. [4]
The initial product is a thioamide for example that of acetophenone [7] which can again be hydrolyzed to the amide. The reaction is named after Karl Kindler The Kindler modification of the Willgerodt rearrangement. A possible reaction mechanism for the Kindler variation is depicted below: [8] The likely reaction mechanism for the Kindler ...
These reactions proceed via the intermediacy of amides. The intramolecular reaction of a carboxylic acid with an amide is far faster than the intermolecular reaction, which is rarely observed. They may also be produced via the oxidation of amides, particularly when starting from lactams. [6] R(CO)NHCH 2 R' + 2 [O] → R(CO)N(CO)R' + H 2 O
The Ritter reaction (sometimes called the Ritter amidation) is a chemical reaction that transforms a nitrile into an N-alkyl amide using various electrophilic alkylating reagents. The original reaction formed the alkylating agent using an alkene in the presence of a strong acid .
In organic chemistry, the Schmidt reaction is an organic reaction in which an azide reacts with a carbonyl derivative, usually an aldehyde, ketone, or carboxylic acid, under acidic conditions to give an amine or amide, with expulsion of nitrogen.