Search results
Results From The WOW.Com Content Network
Since cosh x + sinh x = e x, an analog to de Moivre's formula also applies to the hyperbolic trigonometry. For all integers n, ( + ) = + . If n is a rational number (but not necessarily an integer), then cosh nx + sinh nx will be one of the values of (cosh x + sinh x) n. [4]
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
2.4 Modified-factorial denominators. 2.5 Binomial coefficients. 2.6 Harmonic numbers. 3 Binomial coefficients. 4 Trigonometric functions. 5 Rational functions.
The system Q(Rx) = b is solved by Rx = Q T b = c, and the system Rx = c is solved by 'back substitution'. The number of additions and multiplications required is about twice that of using the LU solver, but no more digits are required in inexact arithmetic because the QR decomposition is numerically stable .
When radians (rad) are employed, the angle is given as the length of the arc of the unit circle subtended by it: the angle that subtends an arc of length 1 on the unit circle is 1 rad (≈ 57.3°), and a complete turn (360°) is an angle of 2 π (≈ 6.28) rad. For real number x, the notation sin x, cos x, etc. refers to the value of the ...
A calculation confirms that z(0) = 1, and z is a constant so z = 1 for all x, so the Pythagorean identity is established. A similar proof can be completed using power series as above to establish that the sine has as its derivative the cosine, and the cosine has as its derivative the negative sine.
A trigonometric number is a number that can be expressed as the sine or cosine of a rational multiple of π radians. [2] Since sin ( x ) = cos ( x − π / 2 ) , {\displaystyle \sin(x)=\cos(x-\pi /2),} the case of a sine can be omitted from this definition.
The red section on the right, d, is the difference between the lengths of the hypotenuse, H, and the adjacent side, A.As is shown, H and A are almost the same length, meaning cos θ is close to 1 and θ 2 / 2 helps trim the red away.