When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. B-spline - Wikipedia

    en.wikipedia.org/wiki/B-spline

    A B-spline function is a combination of flexible bands that is controlled by a number of points that are called control points, creating smooth curves. These functions are used to create and manage complex shapes and surfaces using a number of points. B-spline function and Bézier functions are applied extensively in shape optimization methods. [5]

  3. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...

  4. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    Bézier surfaces are a species of mathematical spline used in computer graphics, computer-aided design, and finite element modeling. As with Bézier curves, a Bézier surface is defined by a set of control points. Similar to interpolation in many respects, a key difference is that the surface does not, in general, pass through the central ...

  5. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.

  6. Non-uniform rational B-spline - Wikipedia

    en.wikipedia.org/wiki/Non-uniform_rational_B-spline

    Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces. It offers great flexibility and precision for handling both analytic (defined by common mathematical formulae ) and modeled shapes .

  7. Subdivision surface - Wikipedia

    en.wikipedia.org/wiki/Subdivision_surface

    This is analogous to spline surfaces and curves, where Bézier curves are required to interpolate certain control points, while B-Splines are not (and are more approximate). Subdivision surface schemes can also be categorized by the type of polygon that they operate on: some function best for quadrilaterals (quads), while others primarily ...

  8. Composite Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Composite_Bézier_curve

    Béziergon – The red béziergon passes through the blue vertices, the green points are control points that determine the shape of the connecting Bézier curves. In geometric modelling and in computer graphics, a composite Bézier curve or Bézier spline is a spline made out of Bézier curves that is at least continuous. In other words, a ...

  9. Geometric primitive - Wikipedia

    en.wikipedia.org/wiki/Geometric_primitive

    The software is expected to interpolate the intervening shape of the line between adjacent points in the list as a parametric curve, most commonly a straight line, but other types of curves are frequently available, including circular arcs, cubic splines, and Bézier curves. Some of these curves require additional points to be defined that are ...