Search results
Results From The WOW.Com Content Network
Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...
A lead atom has 82 electrons, arranged in an electron configuration of 4f 14 5d 10 6s 2 6p 2. The sum of lead's first and second ionization energies—the total energy required to remove the two 6p electrons—is close to that of tin, lead's upper neighbor in the carbon group.
Carbon was not made in the Big Bang, but was produced later in larger stars via the triple-alpha process. The subsequent nucleosynthesis of heavier elements (Z ≥ 6, carbon and heavier elements) requires the extreme temperatures and pressures found within stars and supernovae. These processes began as hydrogen and helium from the Big Bang ...
These are a type of red giant that "puffs" off its outer atmosphere, containing some elements from carbon to nickel and iron. Nuclides with mass number greater than 64 are predominantly produced by neutron capture processes—the s-process and r-process–in supernova explosions and neutron star mergers.
Later in its life, a low-mass star will slowly eject its atmosphere via stellar wind, forming a planetary nebula, while a higher–mass star will eject mass via a sudden catastrophic event called a supernova. The term supernova nucleosynthesis is used to describe the creation of elements during the explosion of a massive star or white dwarf.
The James Webb Space Telescope captured photos of one of the earliest supernovas ever seen using infrared technology, and creating a time lapse of the phenomena.
The model for the formation of this category of supernova is a close binary star system. The larger of the two stars is the first to evolve off the main sequence, and it expands to form a red giant. The two stars now share a common envelope, causing their mutual orbit to shrink.
Astronomers have taken the first close-up image of a star beyond our galaxy, and it’s a “monster star” surrounded by a cocoon as it slowly dies.