Search results
Results From The WOW.Com Content Network
An approximate nearest neighbor search algorithm is allowed to return points whose distance from the query is at most times the distance from the query to its nearest points. The appeal of this approach is that, in many cases, an approximate nearest neighbor is almost as good as the exact one.
In computational geometry, the fixed-radius near neighbor problem is a variant of the nearest neighbor search problem. In the fixed-radius near neighbor problem, one is given as input a set of points in d-dimensional Euclidean space and a fixed distance Δ. One must design a data structure that, given a query point q, efficiently reports the ...
An important application of ball trees is expediting nearest neighbor search queries, in which the objective is to find the k points in the tree that are closest to a given test point by some distance metric (e.g. Euclidean distance). A simple search algorithm, sometimes called KNS1, exploits the distance property of the ball tree.
The nearest neighbour algorithm was one of the first algorithms used to solve the travelling salesman problem approximately. In that problem, the salesman starts at a random city and repeatedly visits the nearest city until all have been visited. The algorithm quickly yields a short tour, but usually not the optimal one.
An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor. The k-NN algorithm can also be generalized for regression.
A very high-level description of Isomap algorithm is given below. Determine the neighbors of each point. All points in some fixed radius. K nearest neighbors. Construct a neighborhood graph. Each point is connected to other if it is a K nearest neighbor. Edge length equal to Euclidean distance. Compute shortest path between two nodes. Dijkstra ...
When data is organized in an R-tree, the neighbors within a given distance r and the k nearest neighbors (for any L p-Norm) of all points can efficiently be computed using a spatial join. [9] [10] This is beneficial for many algorithms based on such queries, for example the Local Outlier Factor.
Nearest neighbor graph in geometry; Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman ...