When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    An object is classified by a plurality vote of its neighbors, with the object being assigned to the class most common among its k nearest neighbors (k is a positive integer, typically small). If k = 1, then the object is simply assigned to the class of that single nearest neighbor. The k-NN algorithm can also be generalized for regression.

  3. Nearest neighbor search - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_search

    k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is commonly used in predictive analytics to estimate or classify a point based on the consensus of its neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest neighbors.

  4. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    The unsupervised k-means algorithm has a loose relationship to the k-nearest neighbor classifier, a popular supervised machine learning technique for classification that is often confused with k-means due to the name.

  5. Nearest neighbor - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor

    Nearest neighbor graph in geometry; Nearest neighbor function in probability theory; Nearest neighbor decoding in coding theory; The k-nearest neighbor algorithm in machine learning, an application of generalized forms of nearest neighbor search and interpolation; The nearest neighbour algorithm for approximately solving the travelling salesman ...

  6. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    K-means has a number of interesting theoretical properties. First, it partitions the data space into a structure known as a Voronoi diagram. Second, it is conceptually close to nearest neighbor classification, and as such is popular in machine learning.

  7. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Additionally, even in low-dimensional space, if the average pairwise distance between the k nearest neighbors of the query point is significantly less than the average distance between the query point and each of the k nearest neighbors, the performance of nearest neighbor search degrades towards linear, since the distances from the query point ...

  8. Nearest neighbor graph - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbor_graph

    For situations in which it is necessary to make the nearest neighbor for each object unique, the set P may be indexed and in the case of a tie the object with, e.g., the largest index may be taken as the nearest neighbor. [2] The k-nearest neighbors graph (k-NNG) is a graph in which two vertices p and q are connected by an edge, if the distance ...

  9. David Mount - Wikipedia

    en.wikipedia.org/wiki/David_Mount

    In particular, Mount has worked on the k-means clustering problem, nearest neighbor search, and point location problem. Mount has worked on developing practical algorithms for k-means clustering, a problem known to be NP-hard. The most common algorithm used is Lloyd's algorithm, which is