When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Goldman equation - Wikipedia

    en.wikipedia.org/wiki/Goldman_equation

    The ionic charge determines the sign of the membrane potential contribution. During an action potential, although the membrane potential changes about 100mV, the concentrations of ions inside and outside the cell do not change significantly. They are always very close to their respective concentrations when the membrane is at their resting ...

  3. Voltage-gated ion channel - Wikipedia

    en.wikipedia.org/wiki/Voltage-gated_ion_channel

    Voltage-gated ion-channels are usually ion-specific, and channels specific to sodium (Na +), potassium (K +), calcium (Ca 2+), and chloride (Cl −) ions have been identified. [1] The opening and closing of the channels are triggered by changing ion concentration, and hence charge gradient, between the sides of the cell membrane. [2]

  4. Gating (electrophysiology) - Wikipedia

    en.wikipedia.org/wiki/Gating_(electrophysiology)

    When ion channels are in a 'closed' (non-conducting) state, they are impermeable to ions and do not conduct electrical current. When ion channels are in their open state, they conduct electrical current by allowing specific types of ions to pass through them, and thus, across the plasma membrane of the cell. Gating is the process by which an ...

  5. Goldman–Hodgkin–Katz flux equation - Wikipedia

    en.wikipedia.org/wiki/Goldman–Hodgkin–Katz...

    Intuitively one may understand these limits as follows: if an ion is only found outside a cell, then the flux is Ohmic (proportional to voltage) when the voltage causes the ion to flow into the cell, but no voltage could cause the ion to flow out of the cell, since there are no ions inside the cell in the first place.

  6. Threshold potential - Wikipedia

    en.wikipedia.org/wiki/Threshold_potential

    More sodium is outside the cell relative to the inside, and the positive charge within the cell propels the outflow of potassium ions through delayed-rectifier voltage-gated potassium channels. Since the potassium channels within the cell membrane are delayed, any further entrance of sodium activates more and more voltage-gated sodium channels.

  7. Reversal potential - Wikipedia

    en.wikipedia.org/wiki/Reversal_potential

    We can consider as an example a positively charged ion, such as K +, and a negatively charged membrane, as it is commonly the case in most organisms. [4] [5] The membrane voltage opposes the flow of the potassium ions out of the cell and the ions can leave the interior of the cell only if they have sufficient thermal energy to overcome the energy barrier produced by the negative membrane ...

  8. Biology Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Biology_Monte_Carlo_Method

    The water molecules inside ion channels could be very ordered due to tapered size of the pore, which is often lined with highly charged residues, or hydrogen bond formation between water molecules and protein. [8] As a result, the dielectric constant of water inside an ion channel could be quite different from the value under bulk conditions.

  9. Hodgkin–Huxley model - Wikipedia

    en.wikipedia.org/wiki/Hodgkin–Huxley_model

    The typical Hodgkin–Huxley model treats each component of an excitable cell as an electrical element (as shown in the figure). The lipid bilayer is represented as a capacitance (C m). Voltage-gated ion channels are represented by electrical conductances (g n, where n is the specific ion channel) that depend on both voltage and time.