Search results
Results From The WOW.Com Content Network
The three-way flip is 75% likely to work each time it is tried (if all coins are heads or all are tails, each of which occur 1/8 of the time due to the chances being 0.5 by 0.5 by 0.5, the flip is repeated until the results differ), and does not require that "heads" or "tails" be called.
A test is performed by tossing the coin N times and noting the observed numbers of heads, h, and tails, t. The symbols H and T represent more generalised variables expressing the numbers of heads and tails respectively that might have been observed in the experiment. Thus N = H + T = h + t.
Player A selects a sequence of heads and tails (of length 3 or larger), and shows this sequence to player B. Player B then selects another sequence of heads and tails of the same length. Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player ...
If a fair coin is flipped 21 times, the probability of 21 heads is 1 in 2,097,152. The probability of flipping a head after having already flipped 20 heads in a row is 1 / 2 . Assuming a fair coin: The probability of 20 heads, then 1 tail is 0.5 20 × 0.5 = 0.5 21; The probability of 20 heads, then 1 head is 0.5 20 × 0.5 = 0.5 21
3.125% 1–1 Spinner spins a pair of heads before a pair of tails or odding out. Single Tail 3.125% 1–1 Spinner spins a pair of tails before a pair of heads or odding out. 5 Odds 9.375% 28–1 Spinner spins five odds in a row ("odding out") before either a pair of heads or a pair of tails. Spinner's Bet 3.400% 15–2
If one penny is heads and the other tails, Odd wins and keeps both coins. Matching pennies is a non-cooperative game studied in game theory. It is played between two players, Even and Odd. Each player has a penny and must secretly turn the penny to heads or tails. The players then reveal their choices simultaneously.
The first time heads appears, the game ends and the player wins whatever is the current stake. Thus the player wins 2 dollars if heads appears on the first toss, 4 dollars if tails appears on the first toss and heads on the second, 8 dollars if tails appears on the first two tosses and heads on the third, and so on.
In the heads scenario, Sleeping Beauty would spend her wager amount one time, and receive 1 money for being correct. In the tails scenario, she would spend her wager amount twice, and receive nothing. Her expected value is therefore to gain 0.5 but also lose 1.5 times her wager, thus she should break even if her wager is 1/3.