Search results
Results From The WOW.Com Content Network
PEP (phosphoenol pyruvate) group translocation, also known as the phosphotransferase system or PTS, is a distinct method used by bacteria for sugar uptake where the source of energy is from phosphoenolpyruvate (PEP). It is known to be a multicomponent system that always involves enzymes of the plasma membrane and those in the cytoplasm.
X-ray structures of PEPCK provide insight into the structure and the mechanism of PEPCK enzymatic activity. The mitochondrial isoform of chicken liver PEPCK complexed with Mn 2+, Mn2+-phosphoenolpyruvate (PEP), and Mn 2+-GDP provides information about its structure and how this enzyme catalyzes reactions. [10]
The low activity dimer allows for build-up of phosphoenol pyruvate (PEP), leaving large concentrations of glycolytic intermediates for synthesis of biomolecules that will eventually be used by cancer cells. [8] Phosphorylation of PKM2 by Mitogen-activated protein kinase 1 (ERK2) causes conformational changes that allow PKM2 to enter the nucleus ...
Serine in an amino acid chain, before and after phosphorylation. In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. [1] This process and its inverse, dephosphorylation, are common in biology. [2] Protein phosphorylation often activates (or deactivates) many enzymes. [3] [4]
Mitotic cell division enables sexually reproducing organisms to develop from the one-celled zygote, which itself is produced by fusion of two gametes, each having been produced by meiotic cell division. [5] [6] After growth from the zygote to the adult, cell division by mitosis allows for continual construction and repair of the organism. [7]
When CO 2 is released in the bundle sheath cells, pyruvate is regenerated, and the cycle continues. [8] Though the reaction catalysed by PPDK is reversible, PEP is favoured as the product in biological conditions. This is due to the basic pH in the stroma, where the reaction occurs, as well as high concentrations of adenylate kinase and ...
The protein kinase domain is a structurally conserved protein domain containing the catalytic function of protein kinases. [2] [3] [4] Protein kinases are a group of enzymes that move a phosphate group onto proteins, in a process called phosphorylation.
Protein phosphorylation is a reversible post-translational modification of proteins in which an amino acid residue is phosphorylated by a protein kinase by the addition of a covalently bound phosphate group. Phosphorylation alters the structural conformation of a protein, causing it to become activated, deactivated, or otherwise modifying its ...