When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.

  3. Inverse quadratic interpolation - Wikipedia

    en.wikipedia.org/.../Inverse_quadratic_interpolation

    In numerical analysis, inverse quadratic interpolation is a root-finding algorithm, meaning that it is an algorithm for solving equations of the form f(x) = 0. The idea is to use quadratic interpolation to approximate the inverse of f. This algorithm is rarely used on its own, but it is important because it forms part of the popular Brent's method.

  4. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Simpson's 3/8 rule, also called Simpson's second rule, is another method for numerical integration proposed by Thomas Simpson. It is based upon a cubic interpolation rather than a quadratic interpolation.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    Polynomial interpolation can estimate local maxima and minima that are outside the range of the samples, unlike linear interpolation. For example, the interpolant above has a local maximum at x ≈ 1.566, f(x) ≈ 1.003 and a local minimum at x ≈ 4.708, f(x) ≈ −1.003.

  6. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    In the sixth iteration, we cannot use inverse quadratic interpolation because b 5 = b 4. Hence, we use linear interpolation between (a 5, f(a 5)) = (−3.35724, −6.78239) and (b 5, f(b 5)) = (−2.71449, 3.93934). The result is s = −2.95064, which satisfies all the conditions. But since the iterate did not change in the previous step, we ...

  7. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    If the quadratic term is negligible—meaning that the linear term is sufficiently accurate without adding the quadratic term—then linear interpolation is sufficiently accurate. If the problem is sufficiently important, or if the quadratic term is nearly big enough to matter, then one might want to determine whether the sum of the quadratic ...

  8. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon; the problem may be eliminated by choosing interpolation points at Chebyshev nodes. [5]

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Muller's method — based on quadratic interpolation at last three iterates; Sidi's generalized secant method — higher-order variants of secant method; Inverse quadratic interpolation — similar to Muller's method, but interpolates the inverse; Brent's method — combines bisection method, secant method and inverse quadratic interpolation