When.com Web Search

  1. Ad

    related to: quadratic interpolation example problems

Search results

  1. Results From The WOW.Com Content Network
  2. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.

  3. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    Simpson's 3/8 rule, also called Simpson's second rule, is another method for numerical integration proposed by Thomas Simpson. It is based upon a cubic interpolation rather than a quadratic interpolation.

  4. QUICK scheme - Wikipedia

    en.wikipedia.org/wiki/Quick_scheme

    In computational fluid dynamics QUICK, which stands for Quadratic Upstream Interpolation for Convective Kinematics, is a higher-order differencing scheme that considers a three-point upstream weighted by quadratic interpolation for the cell face values.

  5. Interpolation - Wikipedia

    en.wikipedia.org/wiki/Interpolation

    The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.

  6. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    In the sixth iteration, we cannot use inverse quadratic interpolation because b 5 = b 4. Hence, we use linear interpolation between (a 5, f(a 5)) = (−3.35724, −6.78239) and (b 5, f(b 5)) = (−2.71449, 3.93934). The result is s = −2.95064, which satisfies all the conditions. But since the iterate did not change in the previous step, we ...

  7. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon; the problem may be eliminated by choosing interpolation points at Chebyshev nodes. [5]

  8. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    Fitting of a noisy curve by an asymmetrical peak model, with an iterative process (Gauss–Newton algorithm with variable damping factor α).Curve fitting [1] [2] is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, [3] possibly subject to constraints.

  9. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Successive linear programming (SLP) — replace problem by a linear programming problem, solve that, and repeat; Sequential quadratic programming (SQP) — replace problem by a quadratic programming problem, solve that, and repeat; Newton's method in optimization. See also under Newton algorithm in the section Finding roots of nonlinear equations