Search results
Results From The WOW.Com Content Network
Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [ 1 ] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0 ...
43 = (−9) × (−5) + (−2) and −2 is the least absolute remainder. In the division of 42 by 5, we have: 42 = 8 × 5 + 2, and since 2 < 5/2, 2 is both the least positive remainder and the least absolute remainder. In these examples, the (negative) least absolute remainder is obtained from the least positive remainder by subtracting 5 ...
[52] [53] While Python 2.7 and older versions are officially unsupported, a different unofficial Python implementation, PyPy, continues to support Python 2, i.e. "2.7.18+" (plus 3.10), with the plus meaning (at least some) "backported security updates". [54] Python 3.0 was released on 3 December 2008, with some new semantics and changed syntax.
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
The computation stops at row 6, because the remainder in it is 0. Bézout coefficients appear in the last two columns of the second-to-last row. In fact, it is easy to verify that −9 × 240 + 47 × 46 = 2. Finally the last two entries 23 and −120 of the last row are, up to the sign, the quotients of the input 46 and 240 by the greatest ...
Primitive root modulo m: A number g is a primitive root modulo m if, for every integer a coprime to m, there is an integer k such that g k ≡ a (mod m). A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer.