When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normalization (statistics) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(statistics)

    In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series. Some ...

  3. Quantile normalization - Wikipedia

    en.wikipedia.org/wiki/Quantile_normalization

    To quantile normalize two or more distributions to each other, without a reference distribution, sort as before, then set to the average (usually, arithmetic mean) of the distributions. So the highest value in all cases becomes the mean of the highest values, the second highest value becomes the mean of the second highest values, and so on.

  4. Database normalization - Wikipedia

    en.wikipedia.org/wiki/Database_normalization

    Database normalization is the process of structuring a relational database in accordance with a series of so-called normal forms in order to reduce data redundancy and improve data integrity. It was first proposed by British computer scientist Edgar F. Codd as part of his relational model .

  5. Orders of magnitude (data) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(data)

    The order of magnitude of data may be specified in strictly standards-conformant units of information and multiples of the bit and byte with decimal scaling, or using historically common usages of a few multiplier prefixes in a binary interpretation which has been common in computing until new binary prefixes were defined in the 1990s..

  6. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Data normalization (or feature scaling) includes methods that rescale input data so that the features have the same range, mean, variance, or other statistical properties. For instance, a popular choice of feature scaling method is min-max normalization , where each feature is transformed to have the same range (typically [ 0 , 1 ...

  7. Normalized frequency (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Normalized_frequency...

    Therefore, the normalized frequency unit is important when converting normalized results into physical units. Example of plotting samples of a frequency distribution in the unit "bins", which are integer values. A scale factor of 0.7812 converts a bin number into the corresponding physical unit (hertz).

  8. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    Normalizing the RMSD facilitates the comparison between datasets or models with different scales. Though there is no consistent means of normalization in the literature, common choices are the mean or the range (defined as the maximum value minus the minimum value) of the measured data: [ 4 ]

  9. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    The green and blue functions both incur zero loss on the given data points. A learned model can be induced to prefer the green function, which may generalize better to more points drawn from the underlying unknown distribution, by adjusting λ {\displaystyle \lambda } , the weight of the regularization term.