Search results
Results From The WOW.Com Content Network
The semiconductor materials used in electronic devices are doped under precise conditions to control the concentration and regions of p- and n-type dopants. A single semiconductor device crystal can have many p- and n-type regions; the p–n junctions between these regions are responsible for the useful electronic behavior.
A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material (primarily silicon, germanium, and gallium arsenide, as well as organic semiconductors) for its function. Its conductivity lies between conductors and insulators.
The term solid-state became popular at the beginning of the semiconductor era in the 1960s to distinguish this new technology. A semiconductor device works by controlling an electric current consisting of electrons or holes moving within a solid crystalline piece of semiconducting material such as silicon, while the thermionic vacuum tubes it replaced worked by controlling a current of ...
The primary application of monocrystalline silicon is in the production of discrete components and integrated circuits.Ingots made by the Czochralski method are sliced into wafers about 0.75 mm thick and polished to obtain a regular, flat substrate, onto which microelectronic devices are built through various microfabrication processes, such as doping or ion implantation, etching, deposition ...
CMOS inverter (a NOT logic gate). Complementary metal–oxide–semiconductor (CMOS, pronounced "sea-moss ", / s iː m ɑː s /, /-ɒ s /) is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. [1]
The discovery by Kallman and Pope paved the way for applying organic solids as active elements in semiconducting electronic devices, such as organic light-emitting diodes (OLEDs) that rely on the recombination of electrons and holes injected from "ohmic" electrodes, i.e. electrodes with unlimited supply of charge carriers. [13]
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively.