Search results
Results From The WOW.Com Content Network
The algorithm is performed in three stages. The first two stages depend only on the generator g and prime modulus q, and find the discrete logarithms of a factor base of r small primes. The third stage finds the discrete log of the desired number h in terms of the discrete logs of the factor base.
Analogously, in any group G, powers b k can be defined for all integers k, and the discrete logarithm log b a is an integer k such that b k = a. In arithmetic modulo an integer m , the more commonly used term is index : One can write k = ind b a (mod m ) (read "the index of a to the base b modulo m ") for b k ≡ a (mod m ) if b is a primitive ...
On 2 December 2016, Daniel J. Bernstein, Susanne Engels, Tanja Lange, Ruben Niederhagen, Christof Paar, Peter Schwabe, and Ralf Zimmermann announced the solution of a generic 117.35-bit elliptic curve discrete logarithm problem on a binary curve, using an optimized FPGA implementation of a parallel version of Pollard's rho method. The attack ...
Pollard's rho algorithm for logarithms is an algorithm introduced by John Pollard in 1978 to solve the discrete logarithm problem, analogous to Pollard's rho algorithm to solve the integer factorization problem.
A quantum algorithm for solving this problem exists. This algorithm is, like the factor-finding algorithm, due to Peter Shor and both are implemented by creating a superposition through using Hadamard gates, followed by implementing f {\displaystyle f} as a quantum transform, followed finally by a quantum Fourier transform. [ 3 ]
In group theory, a branch of mathematics, the baby-step giant-step is a meet-in-the-middle algorithm for computing the discrete logarithm or order of an element in a finite abelian group by Daniel Shanks. [1] The discrete log problem is of fundamental importance to the area of public key cryptography.
The algorithm was introduced in 1978 by the number theorist John M. Pollard, in the same paper as his better-known Pollard's rho algorithm for solving the same problem. [ 1 ] [ 2 ] Although Pollard described the application of his algorithm to the discrete logarithm problem in the multiplicative group of units modulo a prime p , it is in fact a ...
Computing the discrete logarithm is the only known method for solving the CDH problem. But there is no proof that it is, in fact, the only method. It is an open problem to determine whether the discrete log assumption is equivalent to the CDH assumption, though in certain special cases this can be shown to be the case. [3] [4]