When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    The two circles in the Two points, one line problem where the line through P and Q is not parallel to the given line l, can be constructed with compass and straightedge by: Draw the line m through the given points P and Q. The point G is where the lines l and m intersect; Draw circle C that has PQ as diameter. Draw one of the tangents from G to ...

  3. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    In the first approach, the given circles are shrunk or swelled (appropriately to their tangency) until one given circle is shrunk to a point P. [37] In that case, Apollonius' problem degenerates to the CCP limiting case, which is the problem of finding a solution circle tangent to the two remaining given circles that passes through the point P.

  4. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...

  5. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    According to the inverse function theorem, the matrix inverse of the Jacobian matrix of an invertible function f : R n → R n is the Jacobian matrix of the inverse function. That is, the Jacobian matrix of the inverse function at a point p is

  6. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    Given a triangle ABC and its three Malfatti circles, let D, E, and F be the points where two of the circles touch each other, opposite vertices A, B, and C respectively. Then the three lines AD , BE , and CF meet in a single triangle center known as the first Ajima–Malfatti point after the contributions of Ajima and Malfatti to the circle ...

  7. Linear fractional transformation - Wikipedia

    en.wikipedia.org/wiki/Linear_fractional...

    Here, the 3 × 3 matrix components refer to the incoming, bound and outgoing states. Perhaps the simplest example application of linear fractional transformations occurs in the analysis of the damped harmonic oscillator. Another elementary application is obtaining the Frobenius normal form, i.e. the companion matrix of a polynomial.

  8. Poincaré half-plane model - Wikipedia

    en.wikipedia.org/wiki/Poincaré_half-plane_model

    The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...

  9. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.