Search results
Results From The WOW.Com Content Network
To add an extra row into a table, you'll need to insert an extra row break and the same number of new cells as are in the other rows. The easiest way to do this in practice, is to duplicate an existing row by copying and pasting the markup. It's then just a matter of editing the cell contents.
Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […].
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
The answer is that when the table has a row without containing any rowspan=1 cell, this row is "compressed" upwards and disappears. Solution : divide one of the tall cells so that the row gets one rowspan=1 cell (and don't mind the eventual loss of text-centering).
Programming languages that implement matrices may have easy means for vectorization. In Matlab/GNU Octave a matrix A can be vectorized by A(:). GNU Octave also allows vectorization and half-vectorization with vec(A) and vech(A) respectively. Julia has the vec(A) function as well.
OFFT - recursive block in-place transpose of square matrices, in Fortran; Jason Stratos Papadopoulos, blocked in-place transpose of square matrices, in C, sci.math.num-analysis newsgroup (April 7, 1998). See "Source code" links in the references section above, for additional code to perform in-place transposes of both square and non-square ...
Similarly, vec(A T) is the vector obtaining by vectorizing A in row-major order. The cycles and other properties of this permutation have been heavily studied for in-place matrix transposition algorithms. In the context of quantum information theory, the commutation matrix is sometimes referred to as the swap matrix or swap operator [1]
The latter is obtained by expanding the corresponding linear transformation matrix by one row and column, filling the extra space with zeros except for the lower-right corner, which must be set to 1. For example, the counter-clockwise rotation matrix from above becomes: [ cos θ − sin θ 0 sin θ cos θ 0 0 0 1 ...