Search results
Results From The WOW.Com Content Network
Another variant, called complete induction, course of values induction or strong induction (in contrast to which the basic form of induction is sometimes known as weak induction), makes the induction step easier to prove by using a stronger hypothesis: one proves the statement (+) under the assumption that () holds for all natural numbers less ...
The proof of the general Leibniz rule [2]: 68–69 proceeds by induction. Let f {\displaystyle f} and g {\displaystyle g} be n {\displaystyle n} -times differentiable functions. The base case when n = 1 {\displaystyle n=1} claims that: ( f g ) ′ = f ′ g + f g ′ , {\displaystyle (fg)'=f'g+fg',} which is the usual product rule and is known ...
In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case. Since in principle the induction rule can be applied repeatedly (starting from the proved base case), it follows that all (usually infinitely many) cases are provable. [ 15 ]
The proof uses mathematical induction. The case n = 1 is simply the standard version of Rolle's theorem. For n > 1, take as the induction hypothesis that the generalization is true for n − 1. We want to prove it for n. Assume the function f satisfies the hypotheses of the theorem.
We prove commutativity (a + b = b + a) by applying induction on the natural number b. First we prove the base cases b = 0 and b = S(0) = 1 (i.e. we prove that 0 and 1 commute with everything). The base case b = 0 follows immediately from the identity element property (0 is an additive identity), which has been proved above: a + 0 = a = 0 + a.
Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .
The proof is by mathematical induction on the exponent n. If n = 0 then x n is constant and nx n − 1 = 0. The rule holds in that case because the derivative of a constant function is 0.
Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.