Search results
Results From The WOW.Com Content Network
Damping not based on energy loss can be important in other oscillating systems such as those that occur in biological systems and bikes [4] (ex. Suspension (mechanics)). Damping is not to be confused with friction, which is a type of dissipative force acting on a system. Friction can cause or be a factor of damping.
Pierce [4] undertook an analysis of the effects of amplifier damping factor on the decay time and frequency-dependent response variations of a closed-box, acoustic suspension loudspeaker system. The results indicated that any damping factor over 10 is going to result in inaudible differences between that and a damping factor equal to infinity.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...
Various studies have tested different damping factors, but it is generally assumed that the damping factor will be set around 0.85. [ 5 ] The damping factor is subtracted from 1 (and in some variations of the algorithm, the result is divided by the number of documents ( N ) in the collection) and this term is then added to the product of the ...
Damping factor a.k.a. viscous damping coefficient (Physical Engineering) (units of newton-seconds per meter) - relates a damping force with the velocity of the object whose motion is being dampened. References
Vibration (from Latin vibrāre 'to shake') is a mechanical phenomenon whereby oscillations occur about an equilibrium point.Vibration may be deterministic if the oscillations can be characterised precisely (e.g. the periodic motion of a pendulum), or random if the oscillations can only be analysed statistically (e.g. the movement of a tire on a gravel road).
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Different damping ratios produce different SRSs for the same shock waveform. Zero damping will produce a maximum response. Very high damping produces a very boring SRS: A horizontal line. The level of damping is demonstrated by the "quality factor", Q which can also be thought of transmissibility in sinusoidal vibration case.