When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The intersection points are: (−0.8587, 0.7374, −0.6332), (0.8587, 0.7374, 0.6332). A line–sphere intersection is a simple special case. Like the case of a line and a plane, the intersection of a curve and a surface in general position consists of discrete points, but a curve may be partly or totally contained in a surface.

  3. Minkowski addition - Wikipedia

    en.wikipedia.org/wiki/Minkowski_addition

    An alternative definition of the Minkowski difference is sometimes used for computing intersection of convex shapes. [3] This is not equivalent to the previous definition, and is not an inverse of the sum operation. Instead it replaces the vector addition of the Minkowski sum with a vector subtraction. If the two convex shapes intersect, the ...

  4. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Line–sphere_intersection

    Intersection in two points. Methods for distinguishing these cases, and determining the coordinates for the points in the latter cases, are useful in a number of circumstances. For example, it is a common calculation to perform during ray tracing .

  5. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by:

  6. Projective plane - Wikipedia

    en.wikipedia.org/wiki/Projective_plane

    Using homogeneous coordinates they can be represented by invertible 3 × 3 matrices over K which act on the points of PG(2, K) by y = M x T, where x and y are points in K 3 (vectors) and M is an invertible 3 × 3 matrix over K. [10] Two matrices represent the same projective transformation if one is a constant multiple of the other.

  7. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    There will be an intersection if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment ...

  8. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Since the notions of vector length and angle between vectors can be generalized to any n-dimensional inner product space, this is also true for the notions of orthogonal projection of a vector, projection of a vector onto another, and rejection of a vector from another. In some cases, the inner product coincides with the dot product.

  9. Nullcline - Wikipedia

    en.wikipedia.org/wiki/Nullcline

    The definition, though with the name ’directivity curve’, was used in a 1967 article by Endre Simonyi. [1] This article also defined 'directivity vector' as = + (), where P and Q are the dx/dt and dy/dt differential equations, and i and j are the x and y direction unit vectors.