When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Larmor precession - Wikipedia

    en.wikipedia.org/wiki/Larmor_precession

    Larmor precession is important in nuclear magnetic resonance, magnetic resonance imaging, electron paramagnetic resonance, muon spin resonance, and neutron spin echo. It is also important for the alignment of cosmic dust grains, which is a cause of the polarization of starlight .

  3. Larmor formula - Wikipedia

    en.wikipedia.org/wiki/Larmor_formula

    The Larmor formula can only be used for non-relativistic particles, which limits its usefulness. The Liénard-Wiechert potential is a more comprehensive formula that must be employed for particles travelling at relativistic speeds. In certain situations, more intricate calculations including numerical techniques or perturbation theory could be ...

  4. Ferromagnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Ferromagnetic_resonance

    The power is absorbed by the precessing magnetization (Larmor precession) of the material and lost as heat. For this coupling to occur, the frequency of the incident wave must be equal to the precession frequency of the magnetization (Larmor frequency) and the polarization of the wave must match the orientation of the magnetization.

  5. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    These procedures rely on the fact that bulk magnetization due to nuclear spins precess in a magnetic field at a rate called the Larmor frequency, which is simply the product of the gyromagnetic ratio with the magnetic field strength. With this phenomenon, the sign of γ determines the sense (clockwise vs counterclockwise) of precession.

  6. Magnetic resonance (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Magnetic_resonance...

    If a horizontal rotating field , angular frequency of rotation is applied in the region between poles of magnet 2, produced by oscillating current in circular coils then there is a probability for the atoms passing through there from one spin state to another (= + / > / and vice versa), when = , Larmor frequency of precession of magnetic moment ...

  7. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    The gyromagnetic ratio is also the ratio between the observed angular frequency of Larmor precession and the strength of the magnetic field in nuclear magnetic resonance applications, [39] such as in MRI imaging. For this reason, the quantity γ/2π called "gamma bar", expressed in the unit MHz/T, is often given.

  8. Earth's field NMR - Wikipedia

    en.wikipedia.org/wiki/Earth's_field_NMR

    The geomagnetic field strength and hence precession frequency varies with location and time. Larmor precession frequency = magnetogyric ratio x magnetic field Proton magnetogyric ratio = 42.576 Hz/μT (also written 42.576 MHz/T or 0.042576 Hz/nT) Earth's magnetic field: 30 μT near Equator to 60 μT near Poles, around 50 μT at mid-latitudes.

  9. Bloch equations - Wikipedia

    en.wikipedia.org/wiki/Bloch_equations

    This is the initial condition for the differential equation. Note that when the rotating frame of reference rotates exactly at the Larmor frequency (this is the physical meaning of the above assumption Ω = ω 0), the vector of transverse nuclear magnetization, M xy (t) appears to be stationary.