When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Braking distance - Wikipedia

    en.wikipedia.org/wiki/Braking_distance

    Example: velocity = 50 MPH. stopping distance = 5 squared = 25, add a zero = 250, divide by 2 = 125, sum 2*50 = 225 feet (the exact value can be calculated using the formula given below the diagram on the right).

  3. Stopping sight distance - Wikipedia

    en.wikipedia.org/wiki/Stopping_sight_distance

    d MT = braking distance, m (ft) V = design speed, km/h (mph) a = deceleration rate, m/s 2 (ft/s 2) Actual braking distances are affected by the vehicle type and condition, the incline of the road, the available traction, and numerous other factors. A deceleration rate of 3.4 m/s 2 (11.2 ft/s 2) is used to determine stopping sight distance. [6]

  4. Brake force - Wikipedia

    en.wikipedia.org/wiki/Brake_force

    British Railway Class 90 infobox showing brake force Brake force to weight ratio of the Class 67 is higher than some other locomotives. In the case of railways, it is important that staff are aware of the brake force of a train so sufficient brake power will be available to bring the train to a halt within the required distance from a given speed.

  5. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    The static friction force adapts to the residual spring force, establishing equilibrium with zero net force and zero velocity. Consider the example of a braking and decelerating car. The brake pads generate kinetic frictional forces and constant braking torques on the disks (or drums) of the wheels. Rotational velocity decreases linearly to ...

  6. Stokes number - Wikipedia

    en.wikipedia.org/wiki/Stokes_number

    To convert the velocity as a function of time to a particle velocity distribution as a function of distance, let's assume a 1-dimensional velocity jump in the direction. Let's assume x = 0 {\displaystyle x=0} is positioned where the shock wave is, and then integrate the previous equation to get:

  7. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    The mathematical by-product of this calculation is the mass–energy equivalence formula, that mass and energy are essentially the same thing: [14]: 51 [15]: 121 = = At a low speed (v ≪ c), the relativistic kinetic energy is approximated well by the classical kinetic energy.

  8. Cornering brake control - Wikipedia

    en.wikipedia.org/wiki/Cornering_Brake_Control

    These sensors calculate variables such as speed, acceleration, yaw rate, and steering angle. [16] CBC then uses these variables to adjust brake pressure, desired yaw rate, brake steer torque, and stopping distance. Experimentation with CBC technology has used Hardware-in-the-Loop (HiL) testing to prove its real-time response to these factors ...

  9. Eddy current brake - Wikipedia

    en.wikipedia.org/wiki/Eddy_current_brake

    The braking force decreases as the velocity decreases. When the conductive sheet is stationary, the magnetic field through each part of it is constant, not changing with time, so no eddy currents are induced, and there is no force between the magnet and the conductor. Thus an eddy current brake has no holding force.